
Time Series and
Longitudinal Analyses

CSE545 - Spring 2022
Stony Brook University

H. Andrew Schwartz

 Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

Hadoop File System

MapReduce

Spark

Deep Learning Frameworks

Similarity Search

Recommendation Systems
Regressions->TransformersStreaming

Hypothesis Testing

Data Workflow Frameworks Analytics and Algorithms

Time Series

 Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

Hadoop File System

MapReduce

Spark

Deep Learning Frameworks

Similarity Search

Recommendation Systems
Regressions->TransformersStreaming

Hypothesis Testing

Data Workflow Frameworks Analytics and Algorithms

Time Series

Goal: Generalize temporal patterns

Common tasks:

● Trend Analysis: Extrapolate patterns over time (typically descriptive).

● Temporal Relationships: Correlate Variables over time.
Does X in year correlate with Y in same year?
Does X in year 1 correlate with Y in year 2?

● Forecasting: Predicting a future event (predictive).
(contrasts with “cross-sectional” prediction -- predicting a different group)

● Quasi-Experimental Design: Evaluate potential causal relationships
(find relationships more likely than correlation alone, to be causal)

Intro to Big Data Time-series

X causes Y as opposed to X is associated with Y

Changing X will change the distribution of Y.

X causes Y Y causes X

Caution about Causation

Spurious Correlations

Extremely common in time-series analysis.

http://tylervigen.com/spurious-correlations

Caution about Causation

http://tylervigen.com/spurious-correlations

Spurious Correlations

Extremely common in time-series analysis.

http://tylervigen.com/spurious-correlations

Caution about Causation

http://tylervigen.com/spurious-correlations
http://tylervigen.com/spurious-correlations

X causes Y as opposed to X is associated with Y

Changing X will change the distribution of Y.

X causes Y Y causes X

Counterfactual Model: Exposed or Not Exposed: X = 1 or 0

Causal Odds Ratio:

exposure must be
random for
causality to be
concluded

Caution about Causation

Temporal Patterns

white noise

(no pattern)

strong autocorrelation

weak autocorrelation

sinusoidal

Temporal Patterns

AR Models:

Linear AR model:

Autoregressive Models (Prediction)

AR Models:

Linear AR model:

Notation:

Autoregressive Models

AR Models:

Linear AR model:

Notation:

Autoregressive Models

Based on error; (a “smoothing” technique).

Q: Best estimator of random data (i.e. white noise)?

Moving Average Models

Based on error; (a “smoothing” technique).

Q: Best estimator of random data (i.e. white noise)?

A: The mean

Moving Average Models

Based on error; (a “smoothing” technique).

Q: Best estimator of random data (i.e. white noise)?

A: The mean

Simple Moving Average

Moving Average Models

In a regression model (ARMA or ARIMA), we consider error terms

Moving Average Models

In a regression model (ARMA or ARIMA), we consider error terms

Moving Average Models

In a regression model (ARMA or ARIMA), we consider error terms

Notation:

attributed to “shocks” -- independent, from a normal distribution

Moving Average Models

AutoRegressive (AR) Moving Average (MA) Model

ARMA(p, q):

ARMA(1, 1):

example: Y is sales; error may be effect from coupon or advertising
(credit: Ben Lambert)

ARMA Models

(skymind, AI Wiki)

Feed-Forward
Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)V)

Recurrent Neural Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Recurrent Neural Network

...

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden

state

y
(i)

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time

costRNN: Optimization

...

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden

state

y
(i)

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time

cost

To find the gradient for the overall graph, we
use back propogation, which essentially
chains together the gradients for each node
(function) in the graph.

With many recursions, the gradients can
vanish or explode (become too large or
small for floating point operations).

RNN: Optimization

Optimization:

Backward Propagation
through Time

cost

(Geron, 2017)

RNN: Optimization

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = GRU(h(t-1) , x(t))

GRU-based RNN

● ARMA
○ Economic indicators
○ System performance
○ Trend analysis

(often situations where there is a general trend and random “shocks”)

● Univariate Models in General
○ Anomaly Detection
○ Forecasting
○ Season Trends
○ Signal Processing

● Integration as predictors within multivariate models

statsmodels.tsa.arima_model

Time-Series Applications

Supplement

Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model “unrolled” depiction

(Geron, 2017)

How to Addressing Vanishing Gradient?

Gated Recurrent Unit

(Geron, 2017)

RNN: The GRU

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate

RNN: The GRU

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate A candidate for updating h,

sometimes called: h~

RNN: The GRU

The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten.

RNN: The GRU

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.

RNN model “unrolled” depiction

(Geron, 2017)

The GRU (LSTM): Zoomed out
Take-Aways

● Simple RNNs are powerful models but they are difficult to train:

○ Just two functions h
(t)

 and y
(t)

 where h
(t)

is a combination of h
(t-1)

 and x
(t)

.

○ Exploding and vanishing gradients make training difficult to converge.

● LSTM (e.g. GRU cells) solve

○ Hidden states pass from one time-step to the next, allow for long-distance

dependencies.

○ Gates are used to keep hidden states from changing rapidly (and thus keeps

gradients under control).

○ To train: mini-batch stochastic gradient descent over cross-entropy cost

