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Intro to Big Data Time-series

Goal: Generalize temporal patterns

Common tasks:

e Trend Analysis: Extrapolate patterns over time (typically descriptive).

e Temporal Relationships: Correlate Variables over time.
Does X in year correlate with Y in same year?
Does X in year 1 correlate with Y in year 27?

e Forecasting: Predicting a future event (predictive).
(contrasts with “cross-sectional” prediction -- predicting a different group)

e Quasi-Experimental Design: Evaluate potential causal relationships
(find relationships more likely than correlation alone, to be causal)



Caution about Causation

X causes Y as opposed to X Is associated with Y

Changing X will change the distribution of .

X causesY 474Y causes X



Caution about Causation

Spurious Correlations

Extremely common in time-series analysis.

http://tylervigen.com/spurious-correlations
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Caution about Causation

X causes Y as opposed to X Is associated with Y

Changing X will change the distribution of .

X causesY 474Y causes X
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emporal Patterns
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Temporal Patterns
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Autoregressive Models (Prediction)

AR Models: Yi=f(Yi1,Yi 0, Y s ... Y &)

Linear AR model: Y; = By + 31Y;_ 1+ BoYi o+ ... + 3. Yep + &
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AR Models: 1= (Yo, Y0, Y3, . Y, &)
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Notation: A&R(U Yt — 0)0 + 31}/f 1



Autoregressive Models

AR Models: 1= (Yo, Y0, Y3, . Y, &)
Linear AR model: Y; = By + 51Yi_1+ BoYi o+ ...+ ,-Bn)/;‘,—p + €

Notation: A&R(U Yt — 0)0 + 31}/f 1

AR(0): V; = 5



Moving Average Models

Based on error; (a “smoothing” technique).

Q: Best estimator of random data (i.e. white noise)?
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Based on error; (a “smoothing” technique).
Q: Best estimator of random data (i.e. white noise)?

A: The mean

yMA _
f‘ p+1




Moving Average Models

Based on error; (a “smoothing” technique).
Q: Best estimator of random data (i.e. white noise)?

A: The mean

yMA _ .
|| : f‘ p+1

Simple Moving Average




Moving Average Models

In a regression model (ARMA or ARIMA), we consider error terms

y:‘ — f(Etv €t—1, €t—2, €¢-3, )
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Moving Average Models

In a regression model (ARMA or ARIMA), we consider error terms

attributed to “shocks” -- independent, from a normal distribution

Notation: I\IAU)A }A/t = 1+ 6 + 0164

MA2): Y; = pu+ ¢ + 0161 + O26i_o



ARMA Models

AutoRegressive (AR) Moving Average (MA) Model

ARMAR.- QF ¥, = By + B1Yic1 + BoYia + ... + ByYio, +

€+ 0161+ 0o+ ...+ 0,6,

ARMA(L 1) Y, = B1Y; 1 + & + Brer

example: Y is sales; error may be effect from coupon or advertising
(credit: Ben Lambert)
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Reeurrent Neural Network

C Y4 ){)’(t) :f(b(t)VV)

Activation Function

“hidden layer” — ) N
’ < by =85V)

C % )

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep.



Recurrent Neural Network
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13T IR ®A  Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden

layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep.



Backward Propagation
through Time

@)

h(1 = tf.tanh(tf.matmul(U,h
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Backward Propagation
through Time /

N

i To find the gradient for the overall graph, we
| use back propogation, which essentially

"Ny = chains together the gradients for each node
' for i in range(1, len(x)): (function) in the graph.

h(n = tf.tanh(tf.matmul(U,

With many recursions, the gradients can
Yy = tf.softmax(tf.matmul“vanish or explode (become too large or

“oe small for floating point operations).
cost = tf.reduce_mean(—tf.redé\\\ ,///




RNN: Optimization

14
)
Backward Propagation [

through Time

Wb [S1Wb ST Wb <

(Geron, 2017)



GRU-based RNN
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layer depends on the current input as well as the activation value o

previous timestep. GRU cell




Time-Series Applications

e ARMA

o Economic indicators
o System performance
o Trend analysis
(often situations where there is a general trend and random “shocks”)

e Univariate Models in General
Anomaly Detection

Forecasting

Season Trends

Signal Processing

O O O O

e Integration as predictors within multivariate models

statsmodels.tsa.arima_model



Supplement



How to Addressing Vanishing Gradient?

Dominant approach: Use Long Short Term Memory Networks (LSTM)
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RNN model “unrolled” depiction

(Geron, 2017)



RNN: The GRU

Gated Recurrent Unit

Yy
i s A
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GRU cell J

X) (Geron, 2017)



RNN: The GRU

Gated Recurrent Unit

relevance gate update gate

Yo

\ A

1 ~

h(t-1)_, \ . hm

i ® Element-wise i
i ~ multiplication |
} @ Addition
i_ logistic !
| m—tanh

. GRU cell

o (Geron, 2017)



RNN: The GRU

Gated Recurrent Unit

relevance gate

(t-1) —p

update gate

Yo

-

A candidate for updating h,

¢ / sometimes called: h~

i — Element-wise !
multiplication

i @ Addition

i_ logistic !

____________________

GRU cell J

(Geron, 2017)



RNN: The GRU

T T
Zy = o(W,, X+ W, -h )+ b,)
T i
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_ T T
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The cake, which contained candles, was eaten.



What about the gradient?

The gates (i.e. multiplications
J— T. T.
zy =0(We' X+ Wy, "h_py+b,) based on a logistic) often end up
r, =o(W, -x,+W, -h,,,+b,) keeping the hidden state exactly
_ T T (or nearly exactly) as it was. Thus,
8y = tanh (W' X+ Wy, - (ry ®hy_y) +by) for most dimensions of h,
0 =2p®he+ (1 -2y ®8,

y ~
\ Ny ™ Ny
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GRU cell /

The cake, which contained candles, was eaten.



What about the gradient?
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The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

Ny ™ ey
This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.



The GRU (LSTM): Zoomed out

Take-Aways

® Simple RNNs are powerful madels but they are difficult to train:

and Yo where h(t) is @ combination of h,, .. and X

o Just two functions h(t) )
o Exploding and vanishing gradients make training difficult to converge.

® L|STM (e.g. GRU cells) solve
o Hidden states pass from one time-step to the next, allow!for long-distance

)

dependencies.
o Gates-are usedto keep hidden states from changing rapidly (and thus keeps

gradients under control).
o To train: mini-batch stochastic gradient descent over cross-entropy cost



