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Goal: Generalize temporal patterns

Common tasks:

● Trend Analysis: Extrapolate patterns over time (typically descriptive).

● Temporal Relationships: Correlate Variables over time. 
Does X in year correlate with Y in same year?
Does X in year 1 correlate with Y in year 2?

● Forecasting: Predicting a future event (predictive). 
(contrasts with “cross-sectional” prediction -- predicting a different group)

● Quasi-Experimental Design: Evaluate potential causal relationships
(find relationships more likely than correlation alone, to be causal)

Intro to Big Data Time-series



X causes Y          as opposed to         X is associated with Y

Changing X will change the distribution of Y. 

X causes Y                Y causes X

Caution about Causation



Spurious Correlations

Extremely common in time-series analysis. 

http://tylervigen.com/spurious-correlations

Caution about Causation

http://tylervigen.com/spurious-correlations


Spurious Correlations

Extremely common in time-series analysis. 

http://tylervigen.com/spurious-correlations

Caution about Causation

http://tylervigen.com/spurious-correlations
http://tylervigen.com/spurious-correlations


X causes Y          as opposed to         X is associated with Y

Changing X will change the distribution of Y. 

X causes Y                Y causes X

Counterfactual Model:   Exposed or Not Exposed:     X = 1 or 0

Causal Odds Ratio: 

exposure must be 
random for 
causality to be 
concluded

Caution about Causation



Temporal Patterns



white noise

(no pattern)

strong autocorrelation

weak autocorrelation

sinusoidal

Temporal Patterns



AR Models: 

Linear AR model: 

Autoregressive Models (Prediction) 
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Autoregressive Models 



Based on error;   (a “smoothing” technique). 

Q: Best estimator of random data (i.e. white noise)? 
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Based on error;   (a “smoothing” technique). 

Q: Best estimator of random data (i.e. white noise)? 

A: The mean

Simple Moving Average

Moving Average Models



In a regression model (ARMA or ARIMA), we consider error terms 
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In a regression model (ARMA or ARIMA), we consider error terms 

Notation: 

attributed to “shocks” -- independent, from a normal distribution

Moving Average Models



AutoRegressive (AR) Moving Average (MA) Model

ARMA(p, q):

ARMA(1, 1): 

example: Y is sales; error may be effect from coupon or advertising
(credit: Ben Lambert)

ARMA Models



(skymind, AI Wiki)

Feed-Forward 
Network



(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)V)

Recurrent Neural Network



(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Recurrent Neural Network



...

#define forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden 

state

y
(i) 

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time 

costRNN: Optimization
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for i in range(1, len(x)):

h
(i) 

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden 

state

y
(i) 

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Optimization:

Backward Propagation
through Time 

cost

To find the gradient for the overall graph, we 
use back propogation, which essentially 
chains together the gradients for each node 
(function) in the graph.

With many recursions, the gradients can 
vanish or explode (become too large or 
small for floating point operations).  

RNN: Optimization



Optimization:

Backward Propagation
through Time 

cost

(Geron, 2017)

RNN: Optimization



(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = GRU(h(t-1) , x(t))

GRU-based RNN



● ARMA
○ Economic indicators
○ System performance
○ Trend analysis

(often situations where there is a general trend and random “shocks”)

● Univariate Models in General
○ Anomaly Detection
○ Forecasting 
○ Season Trends
○ Signal Processing

● Integration as predictors within multivariate models

statsmodels.tsa.arima_model

Time-Series Applications



Supplement



Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model “unrolled” depiction

(Geron, 2017)

How to Addressing Vanishing Gradient?



Gated Recurrent Unit

(Geron, 2017)

RNN: The GRU



The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update  gate

RNN: The GRU



The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update  gate A candidate for updating h, 

sometimes called: h~

RNN: The GRU



The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten. 

RNN: The GRU



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

The cake, which contained candles, was eaten. 



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

This tends to keep the gradient 
from vanishing since the same 
values will be present through 
multiple times in backpropagation 
through time. (The same idea 
applies to LSTMs but is easier to 
see here). 

The cake, which contained candles, was eaten. 



RNN model “unrolled” depiction

(Geron, 2017)

The GRU (LSTM): Zoomed out
Take-Aways

● Simple RNNs are powerful models but they are difficult to train: 

○ Just two functions h
(t)

 and y
(t)

 where h
(t) 

is a combination of h
(t-1)

 and x
(t)

.

○ Exploding and vanishing gradients make training difficult to converge. 

● LSTM (e.g. GRU cells) solve

○ Hidden states pass from one time-step to the next, allow for long-distance 

dependencies. 

○ Gates are used to keep hidden states from changing rapidly (and thus keeps 

gradients under control). 

○ To train: mini-batch stochastic gradient descent over cross-entropy cost


